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AhslraeL Calculations of the elearonic propetties of wry‘ large models or amorphous sil- 
icon are presented using Qladi‘s tight-binding model and the equation-of-motion method. 
The electronic density of slaws and the mnductinty are calculated b r  smctures mnlain- 
ing up to 13 824 atoms generaled using molemlar dynamics techniques. The SNC~UES 
mnlain defects, but the importance of ulis work is Ihat m can make mmparisions with 
earlier calculations using pseudopotentials, work with larger stmctures, use longer mn 
limes and lay the basis for calculations on hydrogenated a-Si and calculations of more 
mmplex ppenies, such as the Hall coeillcient which ir. a Long-standing problem. 

1. Jntmduction 

The quantitative understanding of amorphous semiconductors has remained a ma- 
jor unsolved problem for many years despite, the high level of activity especially 
concerned with device developement 

Progress in computer simulations of electronic and structural properties has made 
it possible to clarify some issues, albeit for structural models which usually consist of 
hundreds of atoms. We have used the www model (Wwten er al l985), pseudopo- 
tentials and the equation-of-motion method (Alhen er d 1975, Weaire and Williams 
1977, Kramer and Weaire 1978, Kramer et a1 1981, Hickey et al 1985, Hickey and 
Morgan 1986, Hickey et al 1%) to study a number of properties. On the other 
hand, the tight-binding models are often used for studies of the electronic properties 
of amorphous systems (Ding and Andersen 1987, Nichols and Wmer 1988, Bose er al 
1988, Biswas et al 1989, Mercer and Chou 1991). Localition in fully bonded models 
of amorphous silicon was studied by Nichols and Wmer (1988), while a tight-binding 
muffin-tin orbitals scheme and the recursion method were also used for studies of 
properties of the www model p o s e  et a1 1988). Recently Biswas er al (1989) applied 
the simple tight-binding model of Chadi (1984) for studies of the electronic structure 
of defects in a model of amorphous silicon composed of 216 atoms. They found a 
large density of gap states arising from threefold coordinated atoms. 

In a very recent paper (Mercer and Chou 1991) studies of the electronic structure 
of amorphous silicon using tight-binding models were presented. The structure con- 
sisted of 588 atoms and was generated by molecular dynamics. The main drawback 
of the structure they used was a very high percentage of fivefold coordinated atoms 
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(Z%), which is much higher than would be expected or is reasonable. They also 
obtained a high density of states in the gap, mainly due to threefold coordinated 
atoms. The results were not very sensitive to the tight-binding models they used. 

In our previous paper (Holender and Morgan 1991) we generated a wide range 
of a model structures of amorphous silicon which were composed of up to lo5 atoms. 
We are now able to present the results of calculations of the electronic conductivity 
for some of these structural models. Because we are dealing with large structures 
(up to 13824 atoms in this study) we have to use. a method which enables us to 
calculate the elecuon density of states and the electrical conductivity of such systems 
with reasonable accuracy. We can then make comparision with previous calculations 
using pseudoptentials, but for onIy 216 atoms. 

We apply the nearest-neighbour tight-binding model of Chadi (1984), combined 
with the equation-of-motion method and compare the results for the smaller systems 
and pseudopotential method. The importance of this w r k  is that the two types of 
calculations are in reasonable agreement, but we are able to perform much more 
precise calculations for larger models and also demonstrate some useful features of 
the equation-of-motion method. This w r k  enables us to extend the method to other 
properties and materials of more applied importance, such as hydrogenated a S i  

J M Holender and G J Mown 

2. The amorphous silicon models 

We have recently published details of various models of amorphous silicon (Holender 
and Morgan 1991) where a common feature is the presence of about 2% of threefold- 
coordinated atoms and a similar fraction of atoms is fivefold coordinated. 

In this paper we will use some of our models and compare results with those 
obtained for the www model. The original www models are fully bonded, i.e. all 
atoms are fourfold coordinated. From EPR experiments it is thought that the number 
of coordination defects is about 10'9-1020 cm-% (Brodsky 1985), so there are about 
0.1% defected atoms in a real network of amorphous silicon, but it is not clear 
what kind of defect gives the EPR signal. It was believed that threefold-coordinated 
atoms are responsible for the signal, but Pantelides (1986,1987) suggested that the 
fivefold-coordinated atoms might be the major defect. Our structures (Holender and 
Morgan 1991) contain about 6% of coordination defects of both types, i.e. an order 
of magnitude more than that indicated by experimental data, but the main point of 
this paper is to demonstrate the p e r  of the equation-of-motion method and the 
usefulness of a simple tight-binding scheme. In this paper we also present results 
for a structure composed of 1728 atoms having only two defected atom, so that the 
concentration of defects approaches the experimental value. An important point is 
that real structures composed only of Si are thought to contain voids or internal 
surfaces which are not present in our model structures. 

3. Electronic structure calculations 

3.1. Method 

In order to carry out calculations for large systems we have used Chadi's nearest- 
neigbour tight-binding model (Chadi 1984). One should be very cautious when ap- 
plying Chadi's parameters for structures other than the diamond structure of silicon, 
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but on the other hand the local environment in the amorphous silicon does not differ 
very much f" those in the diamond structure. It is a semi-empirical approach, 
but, as can be found in the literature piswas ef al 1939, Mercer and Chou 1991) 
and as will be shown in this paper, this model gives quite a good description of 
the electronic properties of amorphous silicon. We have verified its applicability for 
amorphous silicon ourselves by comparing with results for the same structure using 
the pseudopotential approach and we have obtained very good agreement (Hickey 
and Morgan 1986). The tight-binding model has also been applied successfully for 
studies of localization in amorphous germanium-molibdenum alloys. 

Mercer and Chou (1991) compared Chadi's tight-binding model with another 
tight-binding model (Allen et al 1986) With much better justiEed transferability of 
parameters for amorphous silicon. However, the results obtained using both models 
for the same amorphous structure are very similar. 

We apply the equatiorwf-motion method of solving the timedependent 
Schrtidinger equation. The initial wavefunction is chosen to be 

where x j  is a tight-binding basic function (four per site) when only s and p orbitals 
are used. The initial phases, b j ,  are chosen randomly with the condition 

4 N  .. . 

c b ; ( 0 ) b j ( O )  = 1. 
j=1 

The time evolution of the initial random wavefunction 0 is calculated by numerical 
integration of the timedependent SchrMinger equation using the simplest leapfrog 
algorithm. The matrix elements of the tight-binding Hamiltonian are calculated using 
Chadi's parameters with T - ~  scaling as a function of distance T and a cutoff between 
the f b t  and second nearest neighbours d e k e d  by the minimum in the pair distribu- 
tion function. It is known that Chadi's parameters do not decribe the details of the 
conduction band very accurately, but for our studies it is not a very serious drawback 
as we are mncemed with broader issues. We will mainly mncentrate on states in the 
vicinity of the gap. 

The normalization of the wavefunction (2) is conserved throughout aU runs (up 
to lo6 iterations) with an accuracy better than one part in lo6. 
3.2. Electronic densily ofstates 

The electronic density of states is obtained from the following formula 

where T B T (in our calculations T = ST). The exponential damping compensates 
for the Iinite length of integration. Such calculations result in the density of states 
convoluted With a Larentzian with a width inversely proportional to T.  One can 
deconvolute the resulting density of states (Hickey and Morgan 1986), but, due to 
the relatively fast calculations in the tight-binding approximation, we are able to run 
integrations for a very long time (over 100 000 iterations) and make the Lorentzian 
very narrow. The final density of states is obtained by averaging over at least ten sets 
of the initial random phases. 
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3.3. conductiviry 

The conductivity as a function of energy is calculated from the Kubo-Greenwood 
formula (Kramer et d 1981, Hickey et rrl199(la, Hickey et d 199Ob): 

where i , j , k , l  denote the tight-binding states, Ifij = ( i l H l j )  denotes the matrix 
element of the Hatniltonian H, rij is a vector from the site at ri to the site at r j ,  
e is the direction of the applied electric field, is the volume, N is the number of 
atoms and () denotes averaging over time. ?he symbol bT(t) denotes the amplitude 
of the j th phase as a function of time as it evolves from an initial random value and 
is filtered to retain only the states near to the required energy E. "%e atering is 
camed out in a way described in Hickey et d (1m). 

The amplitudes are integrated numerically wifh the filter function 

~ , ( t )  = (1/r)(l/dSV)(l/t) sin(Wt/h)exp(iEt/ti) (5 )  

where W is a width of the filter function. In all calculations W = 0.1 eV If the 
integration is camed out for sufficient time, then the filter function has a nearly 
rectangular shape. This function integrated mer 100000 iteration ste s the value 
used in our calculations) is shown in figure 1 (without a factor of 1/ P 2W which is 
required for calculations of the conductivity). Thii filter function is very useful, in 
general, for isolating a group of states and can be used, for example, in self-consistent 
calculations or calculations of the optical properties (Weaire er al 1991). firthemore, 
a very important point is that it can be used to decrease the effective band width and 
then a larger time step can be used to perform calculations on larger systems. 
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4 Calculations 

4.1. Smcnues and paramems 
We have &men the following structures for our study: 

(i) The original www structure (216 atoms, fully bonded). 
(ii) The www struchtre relaxed with the Stillinger-Weber potential (StiUmger and 

Weber 1975) using molecular dynamics (216 atoms, fully bonded; denoted by SI). 
(iii) A structure composed of 216 atoms with two defected (undercoordinated) 

atoms generated using molecular dynamics starting from the Wooten and Weaire 
model (denoted by SZ). 

(iv) A structure from our paper (Holender and Morgan 1991) having about 4% 
overcoordinated and 2% undercoordinated atoms (1728 atoms; Bl). 

(v) A structure generated from www (as described by Holender and Morgan 
(1991)) by putting together eight www blocb. However, contrary to structure B1, 
only 125% of the randomly chosen atoms were given higher ldnetic energy. The 
saucture was later cooled to 0 K lhis structure contains only two defected (not 
fourfold coordinated) atoms, so the number of defects roughly corresponds to the 
range of experimental values deduced from EPR measurements. The one drawback 
of thii structure is that a degree of the initial periodicity is retained, but it should not 
be very important for the study of electronic propeitks. We will denote this structure 
B2. 

Enally we used the structure h42 from our previous paper (Holender and Morgan 
1591), composed of 13 824 atoms and having 2% threefold coordinated atoms and 
45% fivefold coordinated ones. 

The time step used in our integrations is At = 0.005 fs for the calculations of 
the density of states; for the atered states the time step can be increased by a factor 
of up to ten to increase the speed of calculations. The calculations of the electronic 
density of states are camed out over the whole range of energies for the tight-binding 
model, ie. from -15 eV to 15 eV For systems of 216 atoms we carried out 25000 
iterations and used ten sets of initial random phases. We were able to run calculations 
for longer times, but then we got better resolution (7 is bigger) and very spiky curves 
because of the Limited number of states (864). 

For a bigger system (1728 atoms) we carried out 100000 iterations. When 
calculating the electrical conductivity we concentrated on the States in the Vicinity of 
the gap. During the 100 000 iterations we Ntered states with width (W) equal to 
0.1 eV and calculated the electrical conductivity from (4) by averaging over the final 
10 000 iterations from the total of 25 000. We repeated this procedure for at least 
ten different sets of the initial random phases and we have checked that changing the 
orientation of the electric field has little effect. We found that this procedure gives 
extremely reasonable accuracy, which we tested by using 30 different sets of phases 
for selected samples. The electrical conductivity is calculated for energies around a 
gap at intervals of 0.1 eV 

All the calcuIations are carried out at the densities derived from constant-pressure 
molecular dynamics using the Andersen method (Andersen 1980) and the Stillinger- 
Weber interatomic potential. 

4.2 Results 
In figures 2-6 the density of states is shown for the structures described above and, 
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atom)-' for a StructuTe m m p d  of 13 728 atoms 
(model MZ f" Holender and Morgan (1991)). 

to demonstrate the efficiency of ow algorithm, in figure 7 we show the density of 
states for a larger qsiem consisting of 13 824 atoms. 

When calculating the electrical conductivity from (4), the expresiom ( b p b r )  are 
not needed in the limit of large times, since these terms approach zero rapidly. Let 
us define 

S, = * e ) H i j ( b r b y )  . .  
1.1 
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and 

S2 = (rij . e ) H i j ( r h l  . e ) H k l ( b ~ b ~ b ~ b ~ )  
id.k.1 

then the electrical conductivity has the form 

OF( E )  oc Sz - SI S;. 
Because of the symeny of Hij, S, is an imaginary number and S, is a real one. In 
figure 8 an example of the time dependences of S, S; , S, and S, - S, S; is shown for 
a single set of phases, illustrating the decreases of S, and the remarkable constancy 
of up( E). When the density of states is low then the fluctuations in the asymptotic 
limit for a single set of phases is more prounounffid bemuse each eigenstate within 
the filter function does not receive exactly the same weight. The amplitudes only 
have the same modulus on average, which makes it important to average over phases 
near the gap to obtain accurate results. 

Figures 9-13 show the conductivity and the electronic density of states for energies 
around the gap. 

2 1  ;..--I -<::m OJ < , .  . .  ',.... ... .. .. . !. .. 

I 
- .,... .... ..... j " .+ ..., 

' :  02 

I /. 
..I 

...... 
0.8 

I :, 

L, r: 
.I., -1.0 -3 M 0, ,a I 3  

a0 
D B IB K4 ?a 2- 

time (IS) Energy WI 
+re II ?be time dependence of S, (dotted tine), 
SI S; (dashed line) and SZ -SI S; (solid line) o n  
arbitmy units) for smcturz SZ and mtes filtee 
at an energy of -2 eW 

pigurr 9. I b e  electronic density of states (solid 
line) and conductivity (dotted line) for states dnsc 
to the gap for &e www model. 

.. . . 
F@ 10. The electronic density of states (solid 
line) and conductivity (dotted tine) for states close 
to the gap for structure S 2  

Flgure 11. n e  eleetmnic density of states (solid 
line) and mnductivity (dotted line) for states close 
to the gap for m c t u r e  S3. 
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Fylre U. The dcdronic density d dales (solid 
Iine) and mnductivily (dotted line) for sfats dosc 

*re U. The dcctmnic densily d stales ( d i d  
line) and mnductmty (dotted line) for stata clare 

to lhe gap for glllctmx B1. to lhs gap for stlucturc Bz. 

5. Discussion 

Before starting any discussion we should comment on the defhition of the nearest 
neighbour. If the radial distribution function is equal to zero after the first peak 
then any atom closer in distance than this zero point can reasonably be defined as 
a nearest neighbour (NN). The situation is far more complex if g( r) > 0 between 
m and m, or if there are small additional peaks. This is the case for defected 
structures and probably for the real material as well. In this case it is dear that 
we are dealing with defected smtctures, but there is some ambiguity in assigning the 
number of nearest neigbours for any particular atom. 

14. The radial distribution function for 
mucture m. 

We consider, for example, our structure B2; the radial distribution function is 
shown in figure 14. It is very close to zero in the range from 270 8, to 3.10 8, If 
We define NN by 275 A, then We get 5 atoms with 2", 75 with 3". 1605 with 4" 
and 43 with 5". If ye define NN by 3.0 A, then we get, respectively, 1, 48, 1559, 80. 
So if we have a continuous distribution of interatomic distances, then the concept of 
3, 4 or 5 coordinated atoms is not very clear. It also perhaps casts some doubt on 
the interpretation of EPR results in terms of the mrdinations of atoms, but, on the 
other hand, the nearest-neighbour concept is very useful when discussing structures, 
so we 'kill use it, bearing in mind the above comments. 

As is expected for the www model, we get a well defined gap of about 1.5 eV 
(figure 2), which is in very good agreement with others calculations (e.g. Hickey 
et a1 1985, Hickey and Morgan 1986, Biswas a a1 1989). Relaxation of the www 
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structure using the Stillinger-Weber potential makes the gap slightly narrower (figure 
3), so even if the structure is still fully bonded there are states in a gap region due 
to the distortion of the network. The structure composed of 216 atoms, which has 
two defected atoms, has states in a gap (figure 4). M i e m o r e ,  calculations of the 
density of states using the pseudopotential method give identical results (Hickey B J, 
private communication). When we. project out the density of states associated with 
these atoms it is found that they give the dominant contribution to the gap states; 
this has also been reported by others piswas el al 1989, Mercer and Chou 1991). 

The larger defected structure (figure 5) has a high density of states in the gap, 
presumably because a band of defected states is formed. On the other hand it is 
worth noticing that the structure factor for this structure agrees very well with the 
experimental one (Holender and Morgan 1991). This structure factor has been used 
recently in a test of a new theory of gap formation (Burr et al 1992), which also 
results in only a very low minimum in the gap region This illustrates how a defected 
structures can have a very similar structure factor to a real solid containing voids, 
if one ignores low-angle scattering from voids which are probably always present in 
pure amorphous Si. 

The structure B2 with a low concentration of coordination defects (closer to that 
thought to be the experimental case) retains a gap only slightly narrower (figure 6) 
than the fully coordinated small model. Fmally in figure 7 we show the results for the 
structure composed of 13824 atoms (structure hf2 in Holender and Morgan (1991)). 
It lustrates the efficiency of our method, which enables us to calculate the electronic 
density of states for over lo4 atoms in a reasonable t h e .  This structure also has 
many states in the gap region 

Because of some doubts about the definition of NN, we also checked the role of 
the cutoff in Chadi's tight-binding model. We found that the electronic properties are 
not sensitive to a change in the cutoff in the calculations of the matrix elements in 
the range from 275 8, to 3.00 8, As far as the conductivity is concerned, the states 
in a gap give almost zero conductivity and they are almost certainly localized. From 
figures 9-13 it is clear that the conductivity drops more rapidly than the density of 
states, giving a clear indication of the probable position of mobility edges. 

The conductivity is equal to about 5 x lo5 0-1 m-l for energies away 6om 
a gap. It corresponds to resistivity of 200 pi2 cm, while typical values for liquid 
or amorphous metals are about 100 p 0  cm. This is an indication of free-electron- 
like behaviour away from the gap, as was suggested by Hickey er a1 (1990a). It 
is remarbble that calculations using plane waves and pseudopotentials on smaller 
models give such good qualitative agreement with these tight-binding calculations. 
This is especially noteworthy when one remembers that the results of the "an 
theory for simple liquids can be very sensitive to details of the pseudopotential and 
structure factors. Perhaps it is the case that, in the situations considered here, the 
density of states is the most important factor. The random-phase model predicts 
that the conductivity U is proportional to ( g ( E ) ) *  and also that, if two models yield 
similar density of states, then the conductivities might agree quite well. 

The rea& important thing about these calculations is that they show how accurate 
results can be obtained for large models. This opens the way for studies of hydro- 
genated amorphous silicon using model structures (Mousseau and Lewis 1991) and a 
tight-binding basis. It seems almost certain that hydrogen atoms with a tetrahedral 
arrangement of Si atoms around them at undermrdinated defect sites will pull states 
out of the gap region (Jones B, private communication). Furthermore, we are now 
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able to evaluate the Hall conductivity using the forms given by Morgan and Howson 
(1985) and settle the long-standing puzzles about the anomalous behaviour obsewed 
by LeComber d al (1977) (Holender and Morgan 1992). 

All calculations were canied out using the Amdhal W1200 supercomputer. The 
density of states calculations are rather fast; for 13824 atoms about 90 minutes of 
CPU time were needed. For smaller models calculations are much faster, but we have 
to average over more sets of initial phases. The conductivity calculations are much 
more time-consuming; at least 15 min of CPU time were required in order to get the 
the conductivity value for one energy. 

All structures used in this study and those discussed in Holender and 
Morgan (1991) are available on request on a floppy disk or via Email 
@hy6jan@ukarrleeds.cmsl). 

J M Holender and G J Morgan 
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